Almost Random Projection Machine with Margin Maximization and Kernel Features
نویسندگان
چکیده
Almost Random Projection Machine (aRPM) is based on generation and filtering of useful features by linear projections in the original feature space and in various kernel spaces. Projections may be either random or guided by some heuristics, in both cases followed by estimation of relevance of each generated feature. Final results are in the simplest case obtained using simple voting, but linear discrimination or any other machine approach may be used in the extended space of new features. New feature is added as a hidden node in a constructive network only if it increases the margin of classification, measured by the increase of the aggregated activity of nodes that agree with the final decision. Calculating margin more weight is put on vectors that are close to the decision threshold than on those classified with high confidence. Training is replaced by network construction, kernels that provide different resolution may be used at the same time, and difficult problems that require highly complex decision borders may be solved in a simple way. Relation of this approach to Support Vector Machines and Liquid State Machines is discussed.
منابع مشابه
Random Projection, Margins, Kernels, and Feature-Selection
Random projection is a simple technique that has had a number of applications in algorithm design. In the context of machine learning, it can provide insight into questions such as “why is a learning problem easier if data is separable by a large margin?” and “in what sense is choosing a kernel much like choosing a set of features?” This talk is intended to provide an introduction to random pro...
متن کاملMargin-based Feature Selection Techniques for Support Vector Machine Classification
Feature selection for classification working in high-dimensional feature spaces can improve generalization accuracy, reduce classifier complexity, and is also useful for identifying the important feature “markers”, e.g., biomarkers in a bioinformatics or biomedical context. For support vector machine (SVM) classification, a widely used feature selection technique is recursive feature eliminatio...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملExperimental Analysis on Character Recognition using Singular Value Decomposition and Random Projection
Character recognition, a specific problem in the area of pattern recognition is a sub-process in most of the Optical Character Recognition (OCR) systems. Singular Value Decomposition (SVD) is one of the promising and efficient dimensionality reduction methods, which is already applied and proved in the area of character recognition. Random Projection (RP) is a recently evolved dimension reducti...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010